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Abstract: Forest areas in Portugal are often affected by fires. The objective of this work was to analyze
the most fire-affected areas in Portugal in the summer of 2016 for two municipalities considering
data from Landsat 8 OLI and Sentinel 2A MSI (prefire and postfire data). Different remote sensed
data-derived indices, such as Normalized Difference Vegetation Index (NDVI) and Normalized
Burn Ratio (NBR), could be used to identify burnt areas and estimate the burn severity. In this
work, NDVI was used to evaluate the area burned, and NBR was used to estimate the burn severity.
The results showed that the NDVI decreased considerably after the fire event (2017 images), indicating
a substantial decrease in the photosynthesis activity in these areas. The results also indicate that the
NDVI differences (dNDVI) assumes the highest values in the burned areas. The results achieved
for both sensors regarding the area burned presented differences from the field data no higher than
13.3% (for Sentinel 2A, less than 7.8%). We conclude that the area burned estimated using the Sentinel
2A data is more accurate, which can be justified by the higher spatial resolution of this data.
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1. Introduction

Europe’s Mediterranean forests have, in the last summers (2016–2017), been extremely affected by
large and devastating fires [1–3]. The high frequency at which forest fires have occurred in recent years
in Portugal increase the need for a better interpretation and mapping of fire-damaged areas. In Portugal,
in the summers of 2016 and 2017, several districts were devastated by forest fires, where hundreds
of hectares were burnt, destroying goods and taking human lives. Therefore, it is crucial to estimate
fire-damaged areas in order to implement effective fire management plans and to identify areas that
need to be recovered. The identification of fire-affected areas should be done quickly, accurately, and at
low cost in order to be effective.

Dealing with postfire studies, there is terminology associated with fire intensity, fire severity,
and burn severity that should be introduced [4]. Fire intensity describes the physical combustion
process of energy release from organic matter [5]. Several definitions of fire severity have been
proposed in the literature, generally related to the degree of environmental change caused by fire [5,6].
Remote sensing studies have found a good correlation between NDVI and fire severity estimation
based on biomass loss [7]. The term fire severity provides a description of how fire intensity affected
ecosystems, particularly following wildfires where direct information on fire intensity was absent and
effects are often quite variable within and between different ecosystems [5]. The term burn severity
caused some confusion with fire severity, because it is often based on similar metrics [8]. The term
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burn severity is usually restricted to the loss of organic matter in or on the soil surface [5]. Remote
sensing applications to assess burned areas typically use the term burn severity rather than fire severity.
More details about fire terminology can be found in Keeley [5].

Earth Observation (EO) data, particularly satellite images and derived products combined with
image processing techniques, is becoming more used in the identification of forest fire damaged
areas [4]. Satellite images have been used to assess the conditions before and after forest fires events
and to detect changes in postfire spectral responses, considering the vegetation response [9,10].

Most of the studies involving burn severity and remotely sensed data are based on the Red (R),
Near Infrared (NIR) and Short Wave Infrared (SWIR) spectral regions of the electromagnetic spectrum,
because the chlorophyll decrease associated with this phenomenon leads to major changes in these
wavelengths [11].

The satellite datasets generally used for mapping the postfire effects are the Moderate Resolution
Imaging Spectroradiometer (MODIS) [9], Landsat Thematic Mapper/Enhanced Thematic Mapper Plus
(TM/ETM+) [12], Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) [13],
Landsat 8 Operational Land Imager (OLI) [10], and more recently, Sentinel 2 Multispectral Instrument
(MSI) [14,15]. Comparing the last two sensors, they record data in similar wavelengths, however,
Sentinel 2 (A and B) has a higher spatial and temporal resolution (10/20 m vs. 30 m and 5 days vs.
16 days).

Threshold-based classification of differenced Normalized Burn Ratio (dNBR) [16] has been
widely used to obtain burn severity maps [1,17] and to estimate forest fire damage areas. This ratio
considers the NIR and SWIR spectral regions, since they are less sensitive to atmospheric effects,
and can accurate quantify the vegetation affected and the reduction of canopy moisture and canopy
shadow, i.e., a decrease in NIR regions and increase in SWIR region in the postfire scenario [15].
Despite its worldwide use and the good results achieved in several studies, several problems were
verified [16]: (i) the scene selection for the prefire and postfire analysis is not an easy task. Scene pairs
should represent similar phenology and moisture content; (ii) they should not exhibit between-scene
land-cover changes; and (iii) prefire and postfire images should be cloud-free [16].

Different remote sensed vegetation indices, such as Normalized Difference Vegetation Index
(NDVI) and Enhanced Vegetation Index (EVI), have been used in order to identify burnt areas.
Chuvieco et al. [18] assess the accuracy of different vegetation indices (NDVI, Soil Adjusted
Vegetation Index (SAVI)) for burned land mapping. Six Landsat TM and two NOAA Advanced
very-high-resolution radiometer (AVHRR) images were considered that correspond to prefire and
postfire conditions for several burned areas in Mediterranean countries (Italy, Greece, and Spain).
Escuin et al. [19] analyzed the capacity of NBR and NDVI indices derived from Landsat TM/ETM
images for fire severity assessment in three fires that occurred in southern Spain. Dragozi et al. [20]
investigated the potential of GeoEye images on detecting the field-measured burn severity of a forest
fire in Evros (Greece) during 2011. Results showed that remotely-sensed NDVI-based variables
are able to encapsulate burn severity variability over time. Soulard et al. [21] summarized NDVI
every 16 days across the 28-year Landsat TM time series for 26 meadows, from 1985 to 2012.
Results indicate that NDVI values were significantly lower at the 95% confidence level for burned
meadows following the fire date, yet not significantly lower at the 95% confidence level in the
unburned meadows. Navarro et al. [14] presents the preliminary results of the assessment of several
spectral indices, including NDVI, Green Normalized Difference Vegetation Index (GNDVI), NBR,
and Normalized Difference Vegetation Index, using red-edge spectral bands (NDVIreXn) to assess
the postfire conditions in order to evaluate the burn severity of Madeira island (Portugal) fires
during August 2016, considering Sentinel 2A data. Also, several review papers proved that remote
sensing-based monitoring of postfire effects is an effective approach [22].

The combination of remote sensing data with geographical information systems (GIS) is quite
obvious, since GIS provide tools to integrate and manipulate spatial information [23], and adequate



Environments 2019, 6, 36 3 of 17

spatial processing algorithms that allow, for instance, estimation of remote sensed vegetation indices
and visualization of the results [24].

The main objective of this work was to analyze the potential of Landsat 8 and Sentinel 2A data in
order to estimate fire-damaged areas in Portugal considering NDVI and NBR. Satellite data from 2016
and 2017 from two municipalities (Arouca and Vila Nova de Cerveira) highly affected by forest fires
in the summer of 2016 were chosen for this analysis. The NDVI was firstly used to evaluate the area
burned. After, the dNBR was computed in order to evaluate the burn severity. All the analysis was
performed in a GIS open source (QGIS) environment. The main innovation of this work lies in the
comparison of the sensitivity of the two sensors tested in the computation of NDVI and dNBR [25,26]
and in the retrieve of the areas burned areas, considering that the two sensors record data in similar
wavelengths, however, Sentinel 2A has a higher spatial resolution (10 m vs. 30 m).

2. Materials and Methods

2.1. Study Area and Dataset

On the 11th of August 2016, a strong fire was recorded in Arouca municipality. Five days
later, on 16 August 2016, another devastating fire affected Vila Nova de Cerveira (V. N. Cerveira)
municipality. The study area considered in this work includes the municipality of Arouca (WGS 84
lat/lon: 40◦55′29′ ′ N; 8◦14′23′ ′ W), from Aveiro district and the municipality of V. N. Cerveira (WGS
84 lat/lon: 41◦56′34′ ′ N; 8◦44′27′ ′ W) from Viana do Castelo district, both rural/forest areas located in
the North of Portugal (Figure 1). Another municipality, Sintra (WGS 84 lat/lon: 38◦48′11′ ′ N; 9◦22′54′ ′

W) from Lisboa district was also considered in this study. There are no records of any fire in Sintra
during this period. Therefore, Sintra was used as a control case. The main objective of considering
Sintra as a control case is to prove that the NDVI values were not changed in the period considered.
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Figure 1. Study area: (a) Location of Portugal in Europe; (b) the three municipalities analyzed: 1. V. N.
Cerveira; 2. Arouca; and 3. Sintra.

Arouca has an area of 328 km2, where 76% of its territory is occupied by forest species, mainly by
Erica spp and Pterospartum tridentatum (70% of the forest area). Mediterranean shrublands are highly
fire resilient and historically have experienced high-severity fires [27]. In August 2016, the mean
precipitation and temperature were 0.17 mm and 21.7 ◦C, respectively.

V. N. Cerveira has an area of 108.5 km2, where 40% of its territory is occupied by forest
species, mainly Pinus pinaster (80% of the forest area). Pinus pinaster forests are considered fire-prone
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ecosystems [28,29]. In August 2016, the mean precipitation and temperature were 16.9 mm and
21.6 ◦C, respectively.

According to Koppen classification [30], both areas belong to Group C (Mediterran climates),
specifically, warm-summer Mediterranean climate (Csb).

Two Sentinel 2A images, level 1C, and two Landsat 8 images, L1T, were downloaded and
processed. Sentinel 2A was launched in 2015 and records data in 13 spectral bands (12-bits) with a
temporal resolution of 10 days. The Landsat 8 OLI sensor was launched in 2013 and records data in 11
spectral bands (16-bits), with a 30 m of spatial resolution and 16-day temporal resolution. The main
characteristics of these two sensors are listed in Table 1. The dataset for each municipality considers
one prefire scene (range between March 2016 and July 2016) and one scene approximately of the same
period in 2017 year, i.e., in a postfire condition (Table 2). The dataset acquisition date (almost in Spring)
was chosen in order to maximize the NDVI values. The methodology followed in this work is shown
in the flowchart presented in Figure 2.

Table 1. Main characteristics of Sentinel 2A and Landsat 8.

Sentinel 2A Landsat 8

Spectral
Bands

Central
Wavelength (nm)

Spatial
Resolution (m)

Spectral
Bands

Central
Wavelength (nm)

Spatial
Resolution (m)

B1 443 60 B1 440 30
B2 490 10 B2 480 30
B3 560 10 B3 560 30
B4 665 10 B4 655 30
B5 705 20 B5 865 30
B6 740 20 B6 1610 30
B7 783 20 B7 2200 30
B8 842 10 B8 590 15
B8a 865 20 B9 1370 30
B9 945 60 B10 10.895 * 100 ** (30)
B10 1380 60 B11 12.005 * 100 ** (30)
B11 1610 20
B12 2190 20

* in micrometers; ** Thermal Infrared Sensor (TIRS) bands are acquired at 100 m resolution but are resampled to
30 m in the delivered data product.

Table 2. Dataset considered in this study for the three municipalities analyzed.

Satellite/Sensor Acquisition Date Event Municipality

Landsat 8

14 July 2016
12 April 2017

Prefire event
Postfire event Arouca

14 March 2016
19 March 2017

Prefire event
Postfire event V. N. Cerveira

12 June 2016
28 April 2017

Prefire event
Postfire event Sintra

Sentinel 2A

19 July 2016
15 April 2017

Prefire event
Postfire event Arouca

24 March 2016
19 March 2017

Prefire event
Postfire event V. N. Cerveira

16 June 2016
3 May 2017

Prefire event
Postfire event Sintra
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2.2. Preprocessing

The image processing tasks were computed considering the QGIS plugin “Semi-Automatic
Classification Plugin” (SCP) [31]. All the satellite images were radiometrically corrected and then
were converted to surface reflectance by the dark object subtraction (DOS) method [32]. Landsat 8
OLI images are provided in radiance and scaled prior to output. The spectral radiance at the sensor’s
aperture (Lλ) is given by Equation (1):

Lλ = ML ∗Qcal + AL, (1)

where Lλ is given in watts/(m2*ster*µm); ML is the band-specific multiplicative rescaling factor
(provided in the metadata file); AL is the band-specific additive rescaling factor (provided in the
metadata file); and Qcal is the quantized and calibrated standard product pixel values, i.e., DNs.

Radiance values were converted to Top Of Atmosphere (TOA) reflectance in order to reduce the
between-scene variability through a normalization for solar irradiance. The TOA reflectance (ρTOA)
can be estimated by:

ρTOA =
π ∗ Lλ ∗ d2

ESUNλ ∗ cos θs
, (2)

where d is the Earth–sun distance in astronomical units (provided metadata file); ESUNλ is the mean
solar exo-atmospheric irradiances; and θs is the solar zenith angle (in degrees). Sentinel 2A images
(Level-1C) are already provided in TOA reflectance [33].

However, for both image sensors, the effects of the atmosphere should be considered in order
to estimate the surface reflectance. To properly remove the atmospheric effects requires detailed
information of atmospheric parameters, such as aerosols, water vapor, and ozone. A number of
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atmospheric correction methods have been developed considering radiative transfer algorithms and
atmospheric characterization data [34,35]. However, atmospheric parameters are usually not available
at the time of satellite pass, which limits the use of these models. In this work, Sentinel 2A MSI and
Landsat 8 OLI TOA reflectance were converted to surface reflectance considering the dark-object
subtraction (DOS) algorithm, proposed by Chavez [32]. This algorithm, an image-based atmospheric
correction approach, is based on the fact that very few targets on the Earth’s surface are absolute black,
so an assumed one-percent minimum reflectance is better than zero percent [32].

According to Sobrino et al. [36], based on the method developed by Chavez [32], the surface
reflectance (ρsur) is given by Equation (3):

ρsur =
π
(

Lsat − Lp
)
∗ d2

ESUNλ ∗ cos θs ∗ Tz
, (3)

where Lsat is at-sensor radiance, Tz is the atmospheric transmissivity between the sun and the surface,
Lp is the radiance resulted from the interaction of the electromagnetic radiance with the atmospheric
components; and is expressed as:

Lp = Lmin − L1%, (4)

where Lmin is the radiance that corresponds to a digital count value for which the sum of all the pixels
with digital counts lower or equal to this value is equal to the 0.01% of all the pixels from the image
considered. The term L1% is given in Equation (5):

L1% =
0.01 ∗ cos θs ∗ Tz ∗ ESUNλ

π ∗ d2 , (5)

There are several DOS techniques (e.g., DOS1, DOS2, DOS3, DOS4), based on different assumption
of the Equation (3) parameters. The simplest technique is DOS1, which was employed in this work
through the SCP. It is important to note that the accuracy of image-based techniques is lower than
atmospheric-based algorithm corrections. However, they can be very useful when no atmospheric
parameters are available.

2.3. Spectral Sensitivity

Global sensitivity and uncertainty analyses can highlight the uncertainty, sensitivity,
and complexity of the data [37,38]. In this work, we follow a more simplistic approach—separability
index (SI)—in order to assess the discriminatory ability of the two sensor bands and indices derived
for burned area and fire severity estimation [15,39]. In the SI (Equation (6)), the µ term refers to the
mean values for the band used for burned (b) and unburned (u) areas that were extracted within the
study area, and the δb and δu are standard deviations of the respective bands for the same areas.

SI =
|µb − µu|
(δb + δu)

, (6)

Values larger than 1 allow for a good separability, while values smaller than 1 suggest poor
separability (poor discrimination). More details about this index can be found in [39].

2.4. NDVI Computation

NDVI is one of the most applied spectral indices and is used to monitor the seasonal vegetation
changes and depends on vegetation reflectance properties, and is defined by Equation (7):

NDVI =
ρNIR− ρRed
ρNIR + ρRed

(7)
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where ρNIR and ρRed are, respectively, the NIR band surface reflectance and Red band surface
reflectance. The NDVI assumed values between−1 and +1, where dense and healthy vegetation shows
higher values (close to 1 and typically higher than 0.2) and nonvegetated areas (bare soil) assume
lower values (lower than 0.2). As a ratio, the NDVI has the advantage of minimizing several effects,
such as variations in direct/diffuse irradiance, atmospheric conditions, topography, and atmospheric
attenuation. In this work, the NDVI was computed for the Landsat 8 data and Sentinel 2A data pre
and postfire event (Table 2) considering the surface reflectance values.

2.5. NBR Computation

In order to complement this study, the NBR and dNBR were computed for the two municipalities
where a fire occurred, regarding the two datasets.

The NBR was defined to highlight areas that have burned and to index the burn severity using
satellite images [5]. The equation used to compute NBR is very similar to NDVI except that it uses
SWIR reflectance instead of a visible (Red) reflectance, as is given by Equation (8).

NBR =
ρNIR− ρSWIR
ρNIR + ρSWIR

(8)

The dNBR is usually calculated by considering an image before the fire (burn) and ideally a
second image after the burn. In this study, we use the same images considered in NDVI computation,
so the post burn image is not immediately following the fire event. The prefire scenes should be taken
within the same seasonal period (to match phenological period), as was done in this work. The burn
severity is evaluated considering the difference between the NBR prefire and NBR postfire (dNBR).
The dNBR is a quantitative measure of environmental change due to the fire [40]. It represents a scaled
index of the magnitude of change caused by fire [41]. In order to interpret the dNBR, we use two
classification levels. The first one is a wide classification level, proposed by USGS, and comprises
seven classes, as shown in Table 3. The other classification level, also presented in Table 3, is also a
standard classification of dNBR and comprises only 3 severity levels and is more adapted to the local
species of Mediterranean conditions [25,42].

Table 3. Fire severity levels.

Severity Level dNBR Range (Not Scaled)-
USGS

dNBR Range (Not Scaled)-
Mediterranean Local Conditions

Enhanced Regrowth, high (postfire) <−0.250
Enhanced Regrowth, low (postfire) −0.250 to −0.101

Unburned −0.100 to 0.099
Low Severity 0.100 to 0.269 <0.319

Moderate–low Severity 0.270 to 0.439
0.320–0.649Moderate–high Severity 0.440 to 0.659

High Severity >0.660 >0.650

dNBR - difference Normalized Burn Ratio.

3. Results and Discussion

3.1. Spectral Sensitivity

Figure 3 presents the separability analysis of the two sensors’ original bands and the two indices
analyzed. In this paper, we only present the results for the Arouca municipality. The results for V.N
Cerveira are very similar. For Sintra municipality, this analysis was not performed, since burned areas
are not available.
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Sentinel 2A data. Regarding the two indices analyzed, the dNBR presents higher separability. The 
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Figure 3. Separability analysis for Sentinel 2A and Landsat 8, considering the Arouca municipality:
(a) considered sensor’s original bands; and (b) dNDVI and dNBR.

In both sensors, the lowest separability was obtained in red (R) spectral bands, followed by blue
(B) bands. The green (G) band presents, in both sensors, relatively higher values, but the value for
Sentinel 2A is higher (Figure 3a). Only the Sentinel 2A sensor has bands in the Red Edge (Re1 and
Re2). The separability of these two bands are very different. The Re1 presents a low separability
value, while the Re2 presents a high value. As expected, all the NIR bands for both sensors present
high separability values. NIR bands presented more efficient discrimination of burned–unburned
areas due to their sensitivity in the reflectance of leaf pigments and ash deposition, respectively [15].
Regarding the SWIR bands, it is possible to observe that in both sensors, the longer SWIR band (SWIR2)
provides better separability. In the NIR and SWIR bands, the separability values were slightly higher
for Sentinel 2A. Analyzing the separability values for the two indices analyzed, the Landsat 8-based
spectral indices presented slightly higher values of separability when compared to Sentinel 2A data.
Regarding the two indices analyzed, the dNBR presents higher separability. The dNBR considers the
SWIR2 reflectance instead of a visible (R) reflectance. These results are similar to previous studies
that consider the same sensors and the same indices [15,43]. It is important to note that, although this
sensitivity analysis was performed on all satellite bands, only the R, NIR, and SWIR2 bands were used
to compute the two indices analyzed in this work.

3.2. Spatial Analysis

NDVI maps were generated for Arouca and V. N. Cerveira before (2016) and after (2017) the fire
event. The NDVI maps considering Landsat 8 data for both municipalities are shown in Figure 4.
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A general decrease in the NDVI values in Arouca in 2017 could be easily visualized (Figure 4b).
The decrease in the NDVI values is not homogeneous across the municipality. The East and SE parts
present a higher decrease in the NDVI, and an area which extends in the East–West direction shows
more severe fire action. In V. N. Cerveira it is not possible, just by a visual interpretation of the NDVI
maps presented in Figure 4c,d, to identify the areas more affected by the 2016 fire.

In order to perform a deeper analysis of postfire damage, specific areas from both municipalities
very affected by the 2016 fires were selected for a further analysis (Figure 5). These two areas were
chosen based on the field reports provided by the Portuguese institute of nature conservation and
forests (ICNF—Instituto da Conservação da Natureza e Florestas) [45].
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For the two specifically selected areas presented in Figure 5, the NDVI maps before (2016) and
after (2017) the fire events were computed. Figure 6 presents NDVI maps for the specifically selected
areas of Arouca and V. N. Cerveira taken from Sentinel 2A.

The specifically selected area of Arouca shows a general decrease in NDVI values in 2017,
especially in the central and eastern part, indicating that this area was most severely affected by
the 2016 fire. For the specifically selected area of V. N. Cerveira, although the area analyzed was
smaller, it is possible to clearly check that the better spatial resolution of Sentinel 2A data allows better
identification of the transition between the areas most affected by fire (lower NDVI values) and those
areas that were not (highest NDVI values). It is possible to observe a separation line (probably a
firebreak) that prevented the spread of the fire to the NE zone, which retained high NDVI values after
the 2016 fire. It is also interesting to note that an area with low NDVI values in 2016 (prefire) located in
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the SE part of the image presented higher values of NDVI in 2017 (postfire). That means that, although
these areas had not been affected by the 2016 fire, the NDVI increase could be related to recovery from
an earlier fire event.Environments 2019, 6, 36 10 of 17 
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The NDVI analysis performed in this work includes unitemporal (prefire or postfire) images and
bitemporal (pre-/postfire difference, dNDVI) analysis. Thus, maps of the NDVI difference (dNDVI)
were computed for the two specific selected areas. The result for the selected area of Arouca is showed
in Figure 7, using data from both sensors.Environments 2019, 6, 36 11 of 17 
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The two dNDVI maps presented in Figure 7 for the selected area of Arouca are visually very
similar regarding both sensors. The same was verified for the selected area of V. N. Cerveira (not
showed). High values of the dNDVI (close to 1) were found in the central part of the selected area,
corresponding to areas with the lowest NDVI values in 2017 (postfire, see Figure 6b).

As mentioned before, Sintra municipality was used as a control case, since no fire occurred
between the capture of its two scenes. The NDVI maps generated considering Landsat 8 for 2016 and
2017 are presented in Figure 8. As expected, it is not possible, just by visual inspection, to identify any
change in the NDVI values between 2016 and 2017.
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3.3. Statistical Analysis

The spatial analysis regarding the NDVI values were not sufficient to make any robust conclusion.
Therefore, this analysis must be complemented with a statistical analysis for each area considered. Also,
for Sintra municipality, a specific area was selected for further analysis. Since Sintra was not affected
by forest fires, a forested area identified in the CORINE Land Cover (CLC) map was selected. This area
corresponds to the region where the NDVI values present the higher values (SW part). The statistical
analysis results of the NDVI computation performed in these three selected areas are presented in the
Table 4.

Table 4. NDVI statistical analysis for the selected areas of the three municipalities analyzed.

NDVI

Arouca V. N. Cerveira Sintra

Landsat 8 Sentinel 2A Landsat 8 Sentinel 2A Landsat 8 Sentinel 2A

2016 2017 2016 2017 2016 2017 2016 2017 2016 2017 2016 2017

Minimum 0.125 0.036 −0.038 −0.126 0.257 0.282 0.052 0.029 −0.169 −0.193 −0.276 −0.339
Maximum 0.912 0.872 0.834 0.845 0.776 0.819 0.724 0.736 0.912 0.904 0.873 0.883

Mean 0.666 0.391 0.546 0.323 0.611 0.521 0.517 0.397 0.653 0.684 0.611 0.619
Standard dev. 0.116 0.140 0.112 0.142 0.127 0.156 0.144 0.174 0.178 0.161 0.183 0.171

Median 0.687 0.365 0.564 0.296 0.660 0.511 0.578 0.390 0.705 0.739 0.671 0.676
Variance 0.020 0.005 0.002 0.006 0.003 0.005 0.004 0.007 0.005 0.004 0.055 0.005

Mean Perc. Variation −41.291% −40.842% −14.730% −23.210% +4.747% +1.310%

Considering the values presented in Table 4 for the Arouca area, the statistical values of Landsat 8
and Sentinel 2A data are similar. The mean percentage variation (MPV) is approximately the same
(−41.3% for Landsat 8 and −40.8% for Sentinel 2A), and the mean and median values are also of
the same magnitude. The major difference is in the maximum and in the minimum values of NDVI
identified for each sensor. Sentinel 2A is more sensitive in the identification of extreme NDVI values.

Considering the V. N. Cerveira area, the differences between the values of NDVI obtained by
the two sensors are higher (MPV −14.7% for Landsat 8 and −23.2% for Sentinel 2A). In this case,
the sensibility in identifying the NDVI minimum values is even more evident regarding the two
sensors. Again, Sentinel 2A is more sensitive in the identification of the minimum NDVI values.
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For the Sintra area (not affected by forest fires), the MPV is lower than in the other two areas
analyzed. Moreover, the MPV is positive, which indicates that, in addition to not having experienced
a fire, the vegetation is more active in 2017. The statistical values regarding the two sensors are
quite similar.

3.4. Normalized Burn Ratio (NBR)

The dNBR was computed for the two municipalities affected by fire and for the two selected areas
of these municipalities, considering both datasets. Table 5 and Figure 9 present the dNBR for Arouca
(whole municipality and selected area).

Table 5. dNBR statistical analysis for the entire Arouca municipality and the selected area, considering
both Sentinel 2A and Landsat 8 data.

dNBR
Sentinel 2A Landsat 8

Arouca Selected Area Arouca Selected Area

Minimum −0.807 −0.492 −0.950 −0.388
Maximum 0.987 0.954 0.607 0.569

Mean 0.135 0.271 −0.035 0.161
Standard dev. 0.188 0.187 0.220 1.151

Median 0.086 0.283 0.124 0.172
Environments 2019, 6, 36 13 of 17 
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Analyzing the maps presented in Figure 9, it is possible observe some similarities and the same
pattern tendency in the maps obtained with Landsat 8 and Sentinel 2A. However, we found some
differences between the burn severity values obtained when we check the statistic values given in
Table 5. For instance, considering Sentinel 2A, for Arouca municipality, a maximum value of 0.987
was obtained (0.954 for the selected area), which corresponds to a “High Severity” level for both
classifications proposed and presented in Table 3. This maximum value was lower (0.607 for whole
municipality and 0.569 for selected area) when Landsat 8 data was used. This led us to conclude that
Sentinel 2A, due to its higher spatial resolution, is more sensitive to this index.

In burnt areas, i.e., areas where the NDVI decrease is considerable between 2016 (prefire) and
2017 (postfire), the dNDVI and dNBR assume the highest values (Figures 7 and 9), considering both
sensors and the two areas affected by 2016 fires.

3.5. Field Data

Postfire field surveys are usually conducted to identify burned areas. However, field surveys are
time-consuming and costly, which makes remote sensing data a valid alternative.

The Portuguese institute of nature conservation and forests (ICNF—Instituto da Conservação
da Natureza e Florestas) is the public institution responsible for the evaluation and quantification of
forest fires. According to ICNF, in 2016, there were 13,261 fires in mainland Portugal, of which 21%
were forest fires (with an area burnt >1 ha) and 79% to fires (occurrence of a burned area <1 ha) [41].
The total area of burning was 161,522 ha, of which 48% was in forest areas and 52% was in brushwood.
The total number of events in 2016 presents a reduction of 14% when compared to 2015, and a decrease
of 31% when compared to the average of the previous decade. However, the burned area in 2016 has
increased to double of the average of the last ten years (+110%). The number of monthly registered
occurrences shows that August 2016 was the only month that surpassed the average monthly value of
the decade 2006–2015 [41]. According to the report provided by the ICNF [45], the two municipalities
with the largest burned area in 2016 were Arouca and V. N. Cerveira (Table 6).

Table 6. Total area burned in Arouca and V.N. Cerveira municipalities in the 2016 fires [41].

Municipality Total Area (ha) Total Area Burned (ha)

Arouca 32,800 24,628
Forest area—18,369 ha (74.6%)

Bush—6259 ha (25.4%)

V. N. Cerveira 10,800 6755
Forest area—755 ha (11.6%)

Bush—5889 ha (87.2%)

In order to validate our results, we compare the area burned retrieved by our methodology (based
on NDVI analysis) and the data provided by the ICNF. The results are presented in Table 7.

Table 7. Area burned in Arouca and V.N Cerveira based in the methodology proposed in this work
and available field data.

Municipality
Landsat 8 Area

Burned
(Estimated)

Sentinel 2A Area
Burned

(Estimated)

Field Data Area
Burned (Field)

Differences Landsat
8/Sentinel 2A

Arouca 27,440 ha 26,443 ha 24,628 ha 11.1%/6.8%
V.N. Cerveira 7656 7284 6755 ha 13.3%/7.8%

Regarding the two datasets used, the Sentinel 2A data allowed more accurate estimation of
total burned area than the Landsat 8 data. The differences between estimated area burned and real
area burned was less than 7.8% considering the Sentinel 2A data in both municipalities. The results
obtained with Landsat 8 data were a little worse; however, the differences were never higher than
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13.3%. Although the Landsat 8-based spectral indices present slightly higher values of separability
when compared to Sentinel 2A data, and other factors that could interfere with the NDVI computation,
the main differences in the burned area estimation are related to the spatial resolution of two sensors.

Several bitemporal (pre- and postfire) spectral indices have been described in the literature for
fire and burn severity mapping. For instance, Navarro et al. [14] found similar results for the Madeira
Island in the performance of same spectral indices (NDVI, NBR) employed in this work, using Sentinel
2A data. As in this work, several authors have also proved that the NDVI and dNDVI have shown
good correlation with fire severity [19]. Several authors also report that NBR and dNBR could be
an added value in the estimation of fire and burn severity [46]. Mallinis et al. [15] compared the
performance of the two sensors analyzed in this work. They concluded that Sentinel 2A provided the
highest potential for estimating and mapping fire severity, when compared to Landsat 8 OLI. However,
they also concluded that both sensors complement each other. Delegido et al. [47] also analyzed the
feasibility of Sentinel 2 data for fire studies, and provided a comparison to Landsat 8. They use prefire
and postfire Sentinel 2 and Landsat 8 imagery to compute a Normalized Difference Spectral Index
(NDSI) in the southern Buenos Aires, Argentina. As in the work presented here, the results derived
from Sentinel 2 were better than results derived from Landsat 8. More recently, Amos at al. [48]
demonstrated the ability of Sentinel 2A to detect burnt areas and separate burning severity levels, in a
fire occurred in Sierra de Gata, Spain. As in our work, [48] performed a spectral separability study of
the different bands and derived indices commonly used to detect burnt areas.

4. Conclusions

There are numerous other factors beyond vegetation, such as ignition agents, topography,
landscape fragmentation, and fire management activities, that can influence fire activity in a region.
In this work, the main objective was not evaluating the causes of forest fires or proposing a new model
to estimate the fire hazard or fire risk, but to evaluate the ability of remote sensed derived indices,
such NDVI and dNBR, to estimate the burnt areas and evaluate the burn severity. The study areas
selected for this study correspond to the two municipalities with the largest burned area in 2016 in
mainland Portugal. NDVI was proven to be an excellent indicator to analyze the impact of forest fires
and the computation of dNBR allows evaluation of the burn severity. The results achieved for both
sensors for the area burned in the August 2016 fires in the two municipalities analyzed presented
differences from the field data no higher than 13.3% (for Sentinel 2A data the differences are less
than 7.8%). Moreover, the area burned estimated considering the Sentinel 2A data is more accurate,
which can be justified by the higher spatial resolution of the data. The conjugation of NDVI and
dNBR analysis is an added value in the analysis of fire assessment, since the conjugation of these two
indices allows identification of the forest areas most affected and their recovery behavior after fire.
Thus, the entities responsible for the management of these ecosystems can make an initial assessment
of fire damage and promote more objective measures for their recovery. In conclusion, the higher
spatial resolution of the Sentinel 2A sensor allows higher accuracy in the estimation of burned areas.
In addition to the higher spatial resolution of Sentinel 2A, the temporal resolution of Sentinel 2 (10 days)
was increased with the launch of the Sentinel 2B (March 2017) and therefore the frequency of the
combined constellation revisit is less than 5 days. This fact could be very useful if we intend to make
an evaluation (postfire image) just after a fire’s occurrence. However, for historical fires, the Landsat
program remains the best option. Different indices, such as green normalized difference vegetation
index (GNDVI), SAVI, or modified soil adjusted vegetation index (MSAVI), can also be applied in order
to evaluate the burned areas. Also, the conjugation of multiple indices can provide a more accurate
estimation of the burned areas. This will be our next step.
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